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Abstract: A 1550-nm coherent receiver with a LiNbO3 optical hybrid and balanced 
photoreceivers integrated in a single compact package is reported. Frequency response of the 
integrated receiver and bit-error-rate measurements of optical PSK signals are described.  
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1. Introduction 
A coherent receiver typically employs an optical hybrid followed by balanced photoreceivers at the front end. The 
optical hybrid combines the signal and a local laser before mixing at the photodetectors. An integrated LiNbO3 
based optical hybrid has been previously reported and shown to be a robust device for homodyne [1] as well as 
differential detection [2]. As the signal’s symbol rate increases, tolerance of path length mismatch in the connecting 
optical fibers between the optical hybrid and the balanced detectors reduces [1]. This calls for the need of an 
integrated device in which the photodetectors are precisely mounted at the outputs of the optical hybrid eliminating 
connecting fibers and thus the associated coupling losses and length mismatch. We describe here, to our knowledge, 
the first integration of a 6-port LiNbO3 optical hybrid and two sets of balanced photoreceivers with high-gain 
transimpedance amplifiers (TIAs) in a single compact fiber-pigtailed package. Conversion gain frequency response 
of the packaged integrated coherent receiver (ICR) as well as bit-error-rate (BER) measurement of optical phase-
shift-keyed (PSK) signals using the ICR are presented. 
    
2. Integrated coherent receiver 
Fig. 1 shows a schematic of the ICR and a photograph of the packaged device with polarization-maintaining (PM) 
input fibers. The LiNbO3 optical hybrid is based on x-cut Ti-diffused waveguides with four interconnecting 
directional couplers and two phase-shifters all voltage controllable [1]. A PM-fiber V-groove array was used to 
couple light into the LiNbO3 waveguides of the optical hybrid. The optical excess loss due to waveguide and 
coupling losses of the ICR is about -4.35 dB. Reduction of the excess loss to around -1.5 dB is possible and is 
expected in the next-generation device. The balanced photoreceiver, mounted on a specially designed submount, is 
consists of a linear array of InP photodiodes and two commercial TIAs with differential outputs (positive/negative).  
The photodiodes and TIAs are mounted and connected together via a specially designed high-speed micro-circuit 
board. 
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Fig.  1. Left: Schematic of the 6-port optical hybrid and balanced photoreceiver pairs.  VC1 to VC4 are the coupler 
electrodes while VP1 and VP2 are the phase electrodes. Right: photograph of the ICR. Dimensions: 127×26×13 mm3. 

 
The responsivity of the photodiode at 1550 nm is about 0.9 A/W and the typical dark current is about 30 nA. Fig. 

2a shows the small-signal conversion gain (Cg) frequency response of the four RF ports of the ICR including the 
excess loss (-4.35 dB). Cg without excess loss is therefore higher as can be seen in Fig. 2b. As shown in Fig. 2a, Cg 
is about 250 V/W near 8 GHz but drops off to below 100 V/W beyond 12 GHz. This can be attributed to the 
combined frequency response of the photodetector and TIA before packaging as shown in Fig. 2b (excess loss 
removed) where the response drops sharply near 10 GHz, which accounts for the frequency response roll-off of the 
ICR beyond 10 GHz. Cg of the 1- port of the ICR without excess loss is also shown in Fig. 2b. The additional 
bandwidth reduction of the ICR is attributed to parasitics of the micro-circuit board that will be optimized in the 
next-generation device. 
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Fig.  2. (a) Conversion gain frequency response of the four RF ports of the ICR with excess loss included. (b) Combine 
response of the photodiode and the TIA (before packaging) and the ICR response (1-) with excess loss removed. 

 
3. Detection of optical PSK signal 
The ICR was used to detect optical PSK signals of different formats and symbol rates for system performance 
evaluation. Error-free (BER < 10-9) detection of a 8-GSym/s differential binary PSK (DBPSK) signal using the ICR 
with optical pre-amp and filtering at the receiver employing differential detection was achieved as can be seen in 
Fig. 3. The 8-GSym/s DBPSK signal was produced by a Mach-Zehnder modulator (MZM) biased at null and driven 
by a 8 Gb/s non-return-to-zero (NRZ) pseudo-random binary sequence (PRBS) with a word length of 215-1. 
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Fig.  3. Left: eye waveforms of detected 8 GSym/s NRZ-DBPSK signal from 1+ port of ICR. Vertical scale: 100 mV/div. 
Right: Measured BER of the four RF ports of the ICR versus received power. 

 
The performance of ICR using 12.5 GSym/s return-to-zero (RZ) differential quaternary PSK (DQPSK) signal 

was evaluated using the receiver setup shown in Fig. 4. The RZ-DQPSK signal at ~ 1545 nm was produced by 
driving a packaged LiNbO3 quadrature optical modulator with two 12.5 Gb/s NRZ PRBS (word length: 215-1) 
signals followed by a MZM pulse carver driven at 12.5 GHz producing 50% duty cycle pulse train. The two NRZ 
signals are complementary with a 2-symbol relative time delay. No differential encoding was used. The LiNbO3 
quadrature modulator was also fabricated and packaged in-house. Details of the quadrature modulator will be 
presented. The RZ-DQPSK signal was directed to an erbium-doped fiber amplifier (EDFA) via a variable optical 
attenuator (VOA1) to control optical power into the EDFA.  A 47-GHz optical bandpass filter (BPF) was used to 
suppress ASE noise. A polarization controller (PC) and a polarization beam splitter (PBS) were used to ensure that 
the correct polarization is launched into the ICR. A PM 3-dB coupler and a variable optical delay line (VDL) were 
connected to the two inputs of the ICR providing the one-symbol-delay (80 ps) for differential detection as shown in 
Fig. 4. Due to the high insertion loss of the VDL (-8 dB), an attenuator (VOA3) was inserted into the other arm to 
balance the loss. As a result, the maximum optical power available at the input fiber of the ICR was about -1 dBm 
(EDFA saturated). RF outputs of the ICR were connected to a sampling oscilloscope for eye waveform monitoring 
or to an error detector for BER measurement. One of the RF ports of the ICR was directed to a phase control loop 
used to maintain optimal phase shift in the hybrid (via VP1 or VP2) for maximum eye opening [1]. DC voltages 
were applied to the ICR for photodiodes biases, powering the TIAs, and biasing the couplers (VC1 to VC4). 
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Fig.  4. Detection of 12.5 GSym/s RZ-DQPSK signal using the ICR with closed-loop phase control. Td = 80 ps. 

 
Fig. 5 shows eye diagrams and BER measurement results of the in-phase (I) and quadrature-phase (Q) 

components of the detected 12.5 GSym/s RZ-DQPSK signal. Error-free detection was not possible in this case. This 
is attributed to the frequency response of the ICR beyond 10 GHz and the high insertion loss of the VDL in contrast 
to the case of 8-GSym/s DBPSK error-free detection, which did not require a VDL. Nevertheless, with advanced 
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forward-error-correction (FEC) coding, a corrected BER less than 10-12 is expected for 20 Gb/s aggregated data rate 
since the symbol rate included 25% overhead bandwidth [2].  The received power required for uncorrected BER of 
10-3 (FEC threshold) is about -34 dBm including insertion loss of the VDL. As a comparison, the ICR was replaced 
with discrete components (DCs): a packaged 6-port LiNbO3 optical hybrid (excess loss: -3.7 dB) and a commercial 
15-GHz balanced photoreceiver [2].  BER performance using DCs is also shown in Fig. 5, which is inferior to ICR. 
This can be attributed to the significantly higher conversion gain of the ICR. Note that the BER performance for 
both ICR and DCs is expected to improve significantly if the insertion loss of the VDL is eliminated. 
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Fig.  5. Left: eye diagrams of I (top) and Q (bottom) components of detected 12.5 GSym/s RZ-DQPSK from RF port 2- of 
the ICR and from discrete components (DCs).  Received powers are shown in parenthesis. Horizontal scale: 20 ps/div. 
Right: BER vs. received optical power of I and Q components of RZ-DQPSK using ICR (RF port: 2-) and DCs. 
 

Self-homodyne detection of a 12.5 GSym/s BPSK signal using the ICR was investigated with the local 
laser oscillator (LO) derived from the transmitting laser to achieve automatic phase locking as shown in 
Fig. 6. BER < 10-9 can be obtained with a received power of -25 dBm at the input fiber of the ICR and a 
LO optical power of +9.75 dBm. The eye diagram of the detected BPSK signal from 1+ port of the ICR for 
-25 dBm received power is shown in the top right of Fig. 6. As a comparison, the ICR was replaced with 
discrete components (DCs) as described earlier. In this case, a higher received power of -7 dBm and a LO 
power of +9.75 dBm were required to achieve a BER of 10-9. The eye waveform of the detected BPSK 
signal using DCs for -25 dBm received power is shown in the bottom right of Fig. 6. Here again, the ICR 
significantly outperforms DCs as a result of its high sensitivity (conversion gain) and high saturation 
power, which is crucial for coherent homodyne detection. 
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Fig.  6. Self-homodyne detection of 12.5 Gb/s BPSK using ICR. Eye waveforms of detected 12.5 GSym/s BPSK using ICR 
(top right) and discrete components (bottom right) for received power of -25 dBm are shown. Horizontal scale: 20 ps/div. 

 
In summary, a compact packaged ICR consisting of a LiNbO3 optical hybrid and a pair of balanced 

photoreceivers is reported for the first time to the best of our knowledge. The ICR has a high conversion gain and a 
RF bandwidth around 8 GHz and rolls off sharply near 10 GHz primarily due to the photodiode and TIA. Error-free 
detection of 8 GSym/s optical DBPSK signal were achieved with a receiver sensitivity less than -36 dBm at 10-9 
BER using an optical pre-amp. Detection of a 12.5-GSym/s RZ-DQPSK signal using the ICR was investigated. The 
BER performance was primarily limited by the receiver setup (high insertion loss of VDL) and the frequency 
response of the ICR beyond 10 GHz. Nevertheless, the ICR compares favorably to discrete components. We have 
also investigated self-homodyne detection of 12.5 GSym/s BPSK signal using the ICR and DCs. The ICR shows 
much higher detection sensitivity (-25 dBm) than DCs (-7 dBm) due to its high conversion gain and high saturation 
power. The frequency response of the next-generation ICR is expected to improve with better components (e.g., 
photodiodes and TIAs) and optimization of the micro-circuit board. 
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